I am unhappy to announce the release of Electron 0.4 beta 3.

What's that? unhappy?! Well......

I haven't done a release quite some time. Part of this delay is from a complete refactoring of the user interface; but another big chunk of time comes from trying to build Electron with Atom Shell.

AtomShell is a tool that bundles WebKit/Chromium and NodeJS into a single app bundle. This means developers can download a single app with an icon instead of running Electron from the command line. It might even let us put it into the various app stores some day.

Unfortunately, the switch to AtomShell hasn't been as smooth as I would like. The Mac version builds okay but I have yet to get Windows to work. There seems to be some conflict between the version of Node that the native serial port module uses and the version of Node inside of AtomShell. While I'm sure these are solvable problems I don't want to hold back the rest of Electron. It's still useful even if you have to launch it from the command line. So...

Electron 0.4 beta 3

You can download a Mac .app bundle from here, or check out the source and run node electron to start it from the command line. The new file browser works as do the various dialogs. Compiler output shows up in the debug panel. You can upload through the serial port but the serial port console is still disabled (due to other bugs I'm still working through).

Undoubtedly many things are still broken during the transition from the old UI to the new. Please, please, please file issues on github. I'll get to them ASAP.

Thanks, Josh

I have a problem. Sometimes I get something into my head and it sticks there, taunting me, until I do something about it. Much like the stupid song stuck in your brain, you must play the song to be released from it's grasp. So it is with software.

Last week I had to spend a lot of time in Windows working on a port of Electron. This means lots of Node scripts and Git on the command line.

Windows Pains

It may sound like it sometimes, but I really don't hate Windows. It's a fine GUI operating system but the command shell sucks. Really, really bad. Powershell is an improvement but still pretty bad. There has to be something better. I don't want to hate myself and throw my laptop across the room while coding. It dampens productivity. This blog was the result of that rage face. I tiny birdy told me things will get a lot better in Windows 10. I sure hope so.

In the past I would have used Cygwin, which is a port of Bash and a bunch of unix utilities. Sadly it never worked very well (getting POSIX compliant apps to run on Windows is just a big ball of pain) and support has dwindled in recent years.

Then something happened. After pondering for a while I realized I didn't actually care about having standard Unix utilities. Really I just want the Bash interface. I want a command line interpreter that has a proper history, tab completion, and directory navigation. I want ls and more and cd. I don't actually care if they are spec compliant and can be used in Bash shell scripts. I don't really care about shell scripts at all, since I write everything in Node now. I just want the interface.

I could make a new shell, something simple that would get the job done. Node is already ported to Windows, it's built around streams, and NPM gives me access to endless existing modules. That's 90% of the work already done. I just need to stitch it together.


And so Photon was born.

Photon is about 250 lines of Javascript that give a command line with ls, cp, mv, rm, rmdir, mkdir, more, pwd, and the ability to call other programs like git. It has a very simple form of tab completion (rather buggy), and uses ANSI colors and tables for formatting. (For some reason there are approximately 4.8 billion ANSI color modules for Node).

All you need to do is npm install -g photonsh then photonsh to get this:

Photon Shell screenshot

Most features were trivial to implement. Here is the function for cp.

    cp: function(a,b) {
        if(!fs.existsSync(a))         return fileError("No such file: ",a);
        if(!fs.statSync(a).isFile())  return fileError("Not a file: ",a);
        var ip = fs.createReadStream(path.join(cwd,a));
        var op = fs.createWriteStream(path.join(cwd,b));

Pretty much exactly what you would expect. For the buffered editor with history I used Node's built in readline module which includes callbacks for tab completion.

The hard part

The grand irony here is that I wrote it because of my Windows pain but have yet to actually run it on Windows. I stopped that Windows porting effort for other reasons; so now I just have this program I randomly wrote. Rather than waste the man-months of effort (okay, it was really only about 3 hours), I figured something like this should be shared with the world so that others might learn from my mistakes.

Speaking of mistakes, Photon is horribly buggy and you probably shouldn't run it. No really, it could totally delete your hard drive and stuff. More importantly, Node TTY support is iffy. It turns out Unix shells are very hard to write because of lots of semi-documented assumptions. Go try to write Xterm sometime. There's a reason few people have done it.

In theory a unix shell is simple. You exec a program and pipe it's output to stdout until it's done. The same with input. But what about buffering? But what about ANSI codes? But what about raw keyboard input? Apparently there is a whole world of adhoc specs for how command line apps do 'interactive' things. Running grep from exec is easy. Running vim is not.

In the end I found pausing Node's own REPL interface then execing with the 'inherit' flag worked most of the time. I'm sure there's a better way to do it, but casual Googling with Bing hasn't found it yet.


So where does Photon go from here? I have no idea. There's tons of things you could do with it. Node can stream anything, so copying a remote URL to a local file should be trivial. Or you could build a text mode raytracer. Whatever. The choice is yours. Choose wisely. Or don't. The code will still be here (on github).


I need to move on to other projects so I’m wrapping up the rest of my ideas in this blog. Gotta get it outta my brainz first.

The key concept I’ve explored in this series is that the code you see in an editor need not be identical to what is stored on disk, or the same as what is sent to the compiler. If we relax this constraint then a world of opportunity opens up. We’ve been writing glorified text files for 40 years. We can do better. Let’s explore.


Why can’t you name a variable for? Because in many common languages for is a reserved word. You, as the programmer, aren’t allowed to use for because it represent a particular loop construct. The underlying compiler doesn’t actually care of course. It doesn’t care about the name of any of your variables or other words in your code. The compiler just needs them to be unique symbols, some of which are mapped to existing constructs like conditionals and loops.

If the compiler doesn’t care then why can’t we do it? Because the parser (the ‘front end’ of the compiler) does care. The parser needs to unambiguously transform a stream of ASCII text into an abstract syntax tree. It’s the unambiguous part that’s the trouble. The syntax restrictions in most common languages are there to make the parser happy. If the parser was magical and could just "know what we meant" then any syntax could be used. Perhaps even syntax that made more sense to the human rather than the computer.

Fundamentally, this is what typographic programming does. It lets us tell the parser which text is what without using specific syntax rules. Instead we use color or font choices to indicate whether a given chunk of text is a variable or keyword or something else. Of course editing in such a system would be a pain, but we already know how to solve that problem. Graphical word processors are proof that it is possible. Before we get to how we solve it let us consider why. Would such a system have enough benefits to outweigh the cost of building it. What new things could we do?

Nothing’s reserved

If we use typography to indicate syntax, then keywords no longer need to be reserved. Any keyword could be used as a variable and any text string could be used as a keyword. You could swap for with fore or thusly. You could use spaces in keywords as for each of. These aren’t very useful examples but the compiler could easily handle them.

With the syntactic restrictions lifted we are free to explore new control flow constructs. How about forever to mean an infinite loop and 10 times for standard for fixed length loops? It’s all the same to the compiler but the human reading it would better understand the meaning.

Custom Operators

If nothing is reserved then user defined operators become easy. After all; what is an operator but a function with a single letter name from a restricted character set. In Python 4 + 5 is just sugar for add(4,5).

With no syntax rules anything could be an operator. Operators could have multiple letter names, or other symbols from the full unicode set. The only reason operators are given special treatment to begin with is because they represent functions which are so commonly used (like arithmetic) that we want a shorthand. With free syntax we can create a shorthand for the functions that are useful to the task at hand rather than the abstract general purpose tasks the language inventors imagined.

Let’s look at something more concrete. Using complex numbers and vectors is common in graphics programming, but we have to use clumsy and verbose syntax in most languages. This is sad. Mathematics already has invented compact notation for these concepts but we can’t use them due to ASCII limitations. Without these limitations we could add complex numbers with the plus sign like this:

A +B

instead of


To help the programmer remember these are complex numbers they could be rendered in a different color.

There are two ways to multiply vectors: the dot product and the cross product. They have very different meanings. With full unicode we could use the correct symbols like this:

A ⋅ B  // dot product
A ⨯ B // cross product

No ambiguity at all. It would be too much to expect a language to support every possible notation. Much better instead to have a language that lets the programmer create their own notation.

Customization in Practice

So how would this work in practice? At some point the code must be transformed into something the compiler understands. Let’s postulate a hypothetical language called X. X has no syntax rules, only the semantic rules of it’s AST. To tell the complier how to convert the code into the AST we must provide our own rules. Something like this.

fun => function
cross => cross
dot => dot
|x| => magnitude(x)

fun intersection(V,R) {
     return V dot R / |V|;

We have now defined a mini language in X which still compiles to the same syntactic structure.

Of course typing all of these rules in every file (or compilation unit) would be a huge pain, so we could include them much as we include external libraries.

@include math.rules

fun intersection(V,R) {
     return V dot R / |V|;

Most importantly, not only would the compiler understand these rules but so would the editor. The editor can now indicate that V ⋅ R is valid only if they are both vectors. It could enforce the rules from the rule file. Now our code is limited only by the imagination of our rule writers, not the fixed compiler.

In practice, were X to become popular, we would not see everyone making up their own rules. Instead usage would gather around a few popular rulesets much as JavaScript gathered around a few popular libraries like JQuery. We might call each of these rulesets dialects, each a particular flavor derived from the base X language. Custom DSLs would become trivial to implement. It would be common for developers to use one or two "standard" dialects for most of their code but use a special purpose dialect for a particular task.

The important thing here is that the language no longer has a fixed syntax. It can adapt and evolve as needed. All without changing the compiler.

How do you edit?

I hope I’ve convinced you that a flexible syntax delimited by typography is useful. Many common idioms like iteration, accumulation, and data structure traversals could be distilled to concise syntax. And if it has problems then we can tweak it.

There is one big problem though. How would you actually edit code like this?

Fortunately this problem has already been solved by graphical word processors. These tools use color, font, size, weight and spacing to distinguish one element from another. Choosing the mode for a variable is as simple as selecting it with the cursor and using a drop down.

Manually highlighting a entire page of code would quickly grow tedious, of course. For common operations, like declaring a variable, the programmer could type a special symbol like @. This tells the editor that the next letters are a variable name. The programmer ends it with @ or by pressing the spacebar or return key. This @ symbol doesn’t exist in the code. It is simply to indicate to the editor that the programmer wants to be in ‘variable’ mode. Once the mode is finished the @’s go away and the text is rendered with the ‘variable’ font. This is no different than using star word star to indicate bold in Markdown text. The stars never appear in the rendered text.

The choice of the @ symbol doesn't matter as long as it's easy with the user's native keyboard. @ is good for US keyboards. French or Russians might use something else.

Resolving Ambiguity

Even using manual markup might become tedious, though. Fortunately the editor can usually figure out the meaning of any given token by using the dialect rules. If the rules indicate that # equals division then the editor can just do the right thing. Using manual highlighting would only be necessary if the dialect itself introduces an ambiguity. (ex: # means division and also the start of a hex value)

What about multiplying vectors? You could type in either of the two proper symbols, but the average keyboard doesn’t support those directly. You’d have to memorize a unicode code point or use a floating dialog. Alternatively, we could use code completion. If you type * then the editor knows this must be either dot or cross product. It provides only those two choices in a drop down, much as we auto-complete method names today.

Using a syntax free language does not fully remove the need to resolve ambiguity, it just moves the resolution process to edit time rather than compile time. This is good. The human is present at edit time and can explain to the computer was is correct. The human is not there at compile time, so any ambiguity must result in an error that the human must come back and fix. Furthermore, resolving the ambiguity need only happen once, when the human types it, not every time the code is compiled. This will further reduce code regressions when other parts of the system change.

Undoubtedly we would discover more edge cases, but these are all solvable. Modern GUI word processors and spreadsheets prove this. A more challenging issue is version control.


Code changes over time. It must be versioned. I don’t know why it took 40 years for us to invent distributed version control systems like Git, but at least we have it now. It would be a shame to give that up just as we’ve gotten the world on board. The problem is Git and other VCSs don’t really understand code. They just understand text. There are really only two ways to solve this:

1) modify git, and the other tools around it (diff viewers, github’s website, etc.) to support binary diffs specific to our new system.

2) make the on disk format be pure text.

Clearly option 1 is a non-starter. One day, once language X takes over the world, we could ask the GitHub team to add support for X diffs, but that’s a long ways off. We have to start with option 2.

You might think I’m going back on what I said at the start. After all, I stated we should no longer be writing code as text on disk, but that is exactly what I am suggesting. What I don’t want is to store the same thing that we edit. From the VCS’s point of view the editor and visual representation are irrelevant. The only thing that matters is what is the file on disk. X needs a canonical on serialization format. Regardless of what tool you use to edit X, as long as it saves to the same format we are fine. This is no different than SQL or HTML. Everyone has their favorite tool, but they all write to the same format.

Canonical Serialization Format.

X’s serialization format should obviously be plain text. < 128bit ASCII would be fine, though I think we could handle UTF8 easily. Most modern diff tools can work with UTF8 cleanly, so Japanese comments and math symbols would come through just fine.

The X format should also be unambiguous. Variables are marked up explicitly as variables. Operators as operators. There should be no need for the parser to guess at anything or interpret syntax rules. We could use one of the many existing formats like JSON, XML, or even LaTex. It doesn’t really matter since humans will rarely need to look at them.

But.... since we are defining a new serialization format anyways, there are a few useful things we could add.

Code as Graph

Code is really just a graph. Graphs can be serialized in many ways. Rather than using function names inline they could be represented by identifiers which point to a lookup table. Then, if a function is renamed the code only changes in one place rather than at every point in the code where the function is used. This creates a semantic diff that the diff tool could render as ‘function Y renamed to Z’.

v467 = foo
v468 = bar
v469 = baz

fun v467 () {
return v468 + v469;

Semantic diff-ing could be very powerful. Any refactoring should be reducible to its essential meaning: moved X to a new class or extracted Y from Z. Whitespace changes would be ignored (or never stored in the first place). Commit messages could be context aware: changed X in the unit test for Y and added logging to Z. Our current tools just barely understand when a file has been renamed instead of deleted and a new one added. There’s a lot of room for innovation here.


I hope I’ve convinced you there is value in this approach. Building language X still won’t be easy. To be viable we have to make a compiler, useful dialect definitions, and a visual editor; all at the same time. That’s a lot of work before anyone else can use it. Building on top of existing tools like Eclipse or Atom.io would help, but I know it’s still a big hill to climb. Trust me. The view will be worth it.

Note: I’m a research at Nokia but this blog does not represent my employer. I didn’t move to Microsoft and I’ve never been on the Windows Phone team. These ill considered opinions are my own.

Windows 10 seems nice and all, but it doesn’t do anything to make me care. Fortunately Microsoft can fix all of Windows problems if only they follow my simple multistep plan. You’re welcome.

First, Fix the damn track pads.

The problem: my employer gave me a very nice, probably expensive, laptop. It’s name rhymes with a zinc fad. It’s specs sure are nice. It’s very fast. but the track pad is horrible. Every Windows laptop I’ve tried (which is a lot because Jesse likes to ‘do computers’ at Costco) has a horrible trackpad. why is this so hard? I simply can’t bear to use this laptop without a mouse. the cursor skips around, gestures don’t work all the time, and it clicks when i don’t and it doesn’t click when I do.

The fix: Take over trackpad drivers and make a new quality test for Win10 certification. It used to be that every mouse and keyboard needed it’s own driver, and they were usually buggy. I bought Logitech trackballs in the 90s because they seemed to be the only guys who cared to actually test their drivers (and the addon software was mildly useful). Sometime in the early USB days (Win98ish?) MS made a default mouse and keyboard driver that all devices had to work with. Since then it’s never been an issue. Plug in any mouse and it works perfectly. 100% of the time. MS needs to do the same for trackpads.

Please write your own driver for the N most popular chipsets, standardize the gesture support throughout the OS, then mandate a certain quality level for any laptop that wants to ship windows 10. Hey OEM: If it’s not a Macbook Air quality trackpad experience then no Windows 10 for you.

Make A Proper Command Line Shell

Hide PowerShell, Cygwin, whatever Visual Studio ships with (it has a shell, right?) and the ancient DOS prompt. Make a proper terminal emulator with Bash. (Fix the bugs first). Build it in to the OS, or at least as a free developer download (one of those MS Plus thingies you promised us).

This shell should be fully POSIX compliant and run all standard Unix utilities. I understand you might worry that full POSIX would let developers port code from another platform instead of writing natively for you. That is very astute thinking… for 1999. Unfortunately we live in the futuristic hellscape that is 2014. You need to make it as easy as possible for someone to port code to Windows. Eliminate all barriers. Any standard Unix command line program should compile out of the box with no code changes. Speaking of which..

Give your C++ compiler a GCC mode.

For some reason all ANSI C code compiles perfectly on Mac and Linux but requires special #IFDEFs for Windows.h. Slightly different C libs? Sightly different calling syntax? None of this cdecl vs stdcall nonsense. Make a --gcc flag so that bog standard Linux code compiles with zero changes. Then submit patches to GNU Autoconf and the other make file builders so that this stuff just works. Just fix it.

Build a Package Manager

Now that we have a proper command line Windows needs a package manager. I use Brew on Mac and it works great. I can install any package, share formulas for new packages, and keep everything up to date. I can grab older versions of packages if I want. I can switch between them. Everything all works. Windows needs this, and it should work from both a GUI and CLI.

I know Windows has NuGet and Chocolatey and supposedly something is coming called OneGet. There needs to be one official system that really works. It handles all dependencies. And it should be easy to use with no surprises.

"What surprises?" I hear you say? I wanted to install Node. I couldn’t figure out which package manager to use so I chose Chocolatey since it seemed to be all the new hotness. I go to their website and find four different packages: Node JS (Install), Node JS, Node JS (Command Line), Node Package Manger. What? Which do I choose? They all have a lot of downloads. On every other platform you just install Node. NPM is built in. There are no separate packages. It’s all one thing because you can’t use part of it without the rest.

NodeJS is an alias for NodeJS.commandline. NodeJS.commandline installs to the Chocolatey lib dir. NodeJS.install installs to a system dir. It turns out Chocolatey has both installable and portable packages. As near as I can tell they are identical except for the install path, which is something I shouldn’t have to care about anyway. Oh, and one way will add it to your path and the other won’t. What? Why should I have to care about the difference? Fix it!

I really hope OneGet straightens all of this nonsense. There should be just one way to do things and it must work 100% of the time. I know Microsoft has MSDN subscriptions to sell, but that’s just another repo source added to the universal package manager.

Make Visual Studio be everywhere.

Visual Studio is really an impressive piece of software. It’s really good at what it does. The tooling is amazing. Microsoft needs to let the world know by making it be everywhere.

If you are on Windows, you should get a free copy of VS to download. In theory this is the idea behind Visual Studio Express. So why do I still use Atom or Sublime or even JEdit on Windows? Partly because of the aforementioned package manager problem, but also because Visual Studio isn’t good for all kinds of coding.

Visual Studio is primarily a C/C++ editor, meant for MS’s own projects (and now hacked up for WinPhone and presumably WinRT). They should make it good for everything.

Are you a Java programmer? VS should be your first choice. It should have great Java language support and even version the JDKs with the aforementioned package manager.

Are you a web developer? VS should have awesome HTML and JavaScript support, with the ability to edit remote files via sftp. (Which Atom still doesn't have, either, BTW).

And all of this should be through open hackable plugins, also managed through the package manager. VisualStudio should be so good and so fast that it’s the only IDE you need on Windows, no matter what you are coding.

Why should Microsoft do this? After all, they would be putting a lot of effort into supporting developers who don’t code for their platform. Because Microsoft needs developer mindshare.

I know very few topflight developers who use Windows as their main OS. Most use Macbook Pros or Linux laptops. MS needs to make a development experience so good that programmers will want to use Windows, even if it’s just for web work.

Once I use Windows every day I might take a look at MS’s other stacks. If I’m already using Visual Studio for my JavaScript work then I’d be willing to take a look at developing for Windows Phone; especially if it was a single download within a program I already have installed. Fix it!

Buy VMWare.

You want me to test new versions of Windows? It should be a single click to download. You want me to use your cloud infrastructure? If I could use Visual Studio to create and manage VM instances, then it’s just a single button to deploy an app from my laptop to the cloud. MS’s cloud, where they real money from the movie is made. Buy VM ware to make it happen if you need to. I don’t care. Just fix it!

Be open and tell the world.

MS has always had a problem with openness. They have great technology but have always felt insular. They build great things for Windows Devs and don’t care about the rest of the world. Contribute to the larger community. Make Visual Studio for all sorts of development, even those that don’t add to the bottom line.

Maybe Visual Studio Express already has all sorts of cool plugins that make web coding awesome. I will never know because MS doesn’t market to me. All I hear is “please pretty please make some crappy Windows Phone apps”.

Maybe OneGet fixes all of the package management problems, but I didn’t even know about it until I was forced to use a Windows laptop and did my own research.

Fix It !

Here is the real problem. MS has become closed off. An ecosystem unto itself. This is a great strategy if you are Apple, but you aren’t. Your a software company become a cloud company. You must become more open if you expect your developer mindshare to grow. And from that mindshare new platforms will grow. When MS releases their Windows smart watch, or the Windows Toaster, they will find it a lot easier to get developers on board if they’ve built an open community up first. Efforts like CodePlex are nice, but this philosophy has to come from the top.

Good Luck Nadella.

Lately I've been digging into Rust, a new programming language sponsored by Mozilla. They recently rewrote their docs and announced a roadmap to 1.0 by the end of the year, so now is a good time to take a look at it. I went through the new Language Guide last night then wrote a small ray tracer to test it out.

One of the biggest success stories of the last three decades of programming is memory safety. C and C++ may be fast but it's very easy to have dangling pointers and buffer overflows. Endless security exploits come back to this fundamental limitation of C and C++. Raw pointers == lack of memory safety.

Many modern languages provide this memory safety, but they do it at runtime with references and garbage collection. JavaScript, Java, Ruby, Python, and Perl all fall into this camp. They accomplish this safety at the cost of runtime speed. While they are typically JITed today instead interpreted, they are all slower than C/C++ because of their runtime overhead. For many tasks this is fine, but if you are building something low level or where speed really matters, then you probably go back to C/C++ and all of the problems it entails.

Rust is different. Rust is a statically typed compiled language meant to target the same tasks that you might use C or C++ for today, but it's whole purpose in life is to promote memory safety. By design, Rust code can't have dangling pointers, buffer overflows, or a whole host of other memory errors. Any code which would cause this literally can't be compiled. The language doesn't allow it. I know it sounds crazy, but it really does work.

Most importantly, Rust achieves all of these memory safety guarantees at compile time. There is no runtime overhead, making the final code as fast as C/C++, but far safer.

I won't go into how all of this work, but the short description is that Rust uses several kinds of pointers that let the compiler prove who owns memory at any given moment. If you write up a situation where the complier can't predict what will happen, it won't compile. If you can get your code to compile then you are guaranteed to be memory safe.

I plan to do all of my native coding in Rust when it hits 1.0. Rust has a robust FFI so interfacing with existing C libs is quite easy. Since I absolutely hate C++, this is a big win for me. :)

Coming into Rust I was worried the pointer constraints would make writing code difficult, much like puzzle languages. I was pleasantly surprised to find it pretty easy to code in. It's certainly more verbose than a dynamic language like JavaScript, but I was able to convert a JS ray tracer to Rust in about an hour. The resulting code roughly looks like what you'd expect from C, just with a few differences. Let's take a look.

First, the basic type definitions. I created a Vector, Sphere, Color, Ray, and Light class. Rust doesn't really have classes in the C++/Java sense, but it does have structs enhanced with method implementations, so you can think of them similar to classes.

use std::num;

struct Vector {

impl Vector {
    fn new(x:f32,y:f32,z:f32) -> Vector {
       Vector { x:x, y:y, z:z }
    fn scale(&self, s:f32)    -> Vector  { 
       Vector { x:self.x*s, y:self.y*s, z:self.z*s }
    fn plus(&self, b:Vector)  -> Vector  { 
      Vector::new(self.x+b.x, self.y+b.y, self.z+b.z)
    fn minus(&self, b:Vector) -> Vector  {
       Vector::new(self.x-b.x, self.y-b.y, self.z-b.z) 
    fn dot(&self, b:Vector)   -> f32     { 
      self.x*b.x + self.y*b.y + self.z*b.z 
    fn magnitude(&self)       -> f32     { 
    fn normalize(&self)       -> Vector  { 

struct Ray {

struct Color {

impl Color {
    fn scale (&self, s:f32) -> Color {
        Color { r: self.r*s, g:self.g*s, b:self.b*s }
    fn plus (&self, b:Color) -> Color {
        Color { r: self.r + b.r, g: self.g + b.g, b: self.b + b.b }

struct Sphere {
    color: Color,

impl Sphere {
    fn get_normal(&self, pt:Vector) -> Vector {
        return pt.minus(self.center).normalize();

struct Light {
    position: Vector,
    color: Color,

Without knowing the language you can still figure out what's going on. Types are specified after the field names, with f32 and i32 meaning integer and floating point values. There's also a slew of finer grained number types for when you need tight memory control.

Next up I created a few constants.

static WHITE:Color  = Color { r:1.0, g:1.0, b:1.0};
static RED:Color    = Color { r:1.0, g:0.0, b:0.0};
static GREEN:Color  = Color { r:0.0, g:1.0, b:0.0};
static BLUE:Color   = Color { r:0.0, g:0.0, b:1.0};

static LIGHT1:Light = Light {
    position: Vector { x: 0.7, y: -1.0, z: 1.7} ,
    color: WHITE

Now in my main function I'll set up the scene and create a lookup table of one letter strings for text mode rendering.

fn main() {
    println!("Hello, worlds!");
    let lut = vec!(".","-","+","*","X","M");

    let w = 20*4i;
    let h = 10*4i;

    let scene = vec!(
        Sphere{ center: Vector::new(-1.0, 0.0, 3.0), radius: 0.3, color: RED },
        Sphere{ center: Vector::new( 0.0, 0.0, 3.0), radius: 0.8, color: GREEN },
        Sphere{ center: Vector::new( 1.0, 0.0, 3.0), radius: 0.3, color: BLUE }

Now lets get to the core ray tracing loop. This looks at every pixel to see if it's ray intersects with the spheres in the scene. It should be mostly understandable, but you'll start to see the differences with C.

    for j in range(0,h) {
        for i in range(0,w) {
            //let tMax = 10000f32;
            let fw:f32 = w as f32;
            let fi:f32 = i as f32;
            let fj:f32 = j as f32;
            let fh:f32 = h as f32;

            let ray = Ray {
                orig: Vector::new(0.0,0.0,0.0),
                dir:  Vector::new((fi-fw/2.0)/fw, (fj-fh/2.0)/fh,1.0).normalize(),

            let mut objHitObj:Option<(Sphere,f32)> = None;

            for obj in scene.iter() {
                let ret = intersect_sphere(ray, obj.center, obj.radius);
                if ret.hit {
                    objHitObj = Some((*obj,ret.tval));

The for loops are done with a range function which returns an iterator. Iterators are used extensively in Rust because they are inherently safer than direct indexing.

Notice the objHitObj variable. It is set based on the result of the intersection test. In JavaScript I used several variables to track if an object had been hit, and to hold the hit object and hit distance if it did intersect. In Rust you are encouraged to use options. An Option is a special enum with two possible values: None and Some. If it is None then there is nothing inside the option. If it is Some then you can safely grab the contained object. Options are a safer alternative to null pointer checks.

Options can hold any object thanks to Rust's generics. In the code above I tried out something tricky and surprisingly it worked. Since I need to store several values I created an option holding a tuple, which is like a fixed size array with fixed types. objHitObj is defined as an option holding a tuple of a Sphere and an f32 value. When I check if ret.hit is true I set the option to Some((obj,ret.tval)), meaning the contents of my object pointer and the hit distance.

Now lets look at the second part of the loop, once ray intersection is done.

            let pixel = match objHitObj {
                Some((obj,tval)) => lut[shade_pixel(ray,obj,tval)],
                None             => " "


Finally I can check and retrieve the option values using an if statement or a match. Match is like a switch/case statement in C, but with super powers. It forces you to account for all possible code paths. This ensures there are no mistakes during compilation. In the code above I match the some and none cases. In the Some case it pulls out the nested objects and gives them the names obj and tval, just like the tuple I stuffed into it earlier. This is called destructuring in Rust. If there is a value then it calls shadepixel and returns character in the look up table representing that grayscale value. If the None case happens then it returns a space. In either case we know the pixel variable will have a valid value after the match. It's impossible for pixel to be null, so I can safely print it.

The rest of my code is basically vector math. It looks almost identical to the same code in JavaScript, just strongly typed.

fn shade_pixel(ray:Ray, obj:Sphere, tval:f32) -> uint {
    let pi = ray.orig.plus(ray.dir.scale(tval));
    let color = diffuse_shading(pi, obj, LIGHT1);
    let col = (color.r + color.g + color.b) / 3.0;
    (col * 6.0) as uint

struct HitPoint {

fn intersect_sphere(ray:Ray, center:Vector, radius:f32) -> HitPoint {
    let l = center.minus(ray.orig);
    let tca = l.dot(ray.dir);
    if tca < 0.0 {
        return HitPoint { hit:false, tval:-1.0 };
    let d2 = l.dot(l) - tca*tca;
    let r2 = radius*radius;
    if d2 > r2 {
        return HitPoint { hit: false, tval:-1.0 };
    let thc = (r2-d2).sqrt();
    let t0 = tca-thc;
    //let t1 = tca+thc;
    if t0 > 10000.0 {
        return HitPoint { hit: false, tval: -1.0 };
    return HitPoint { hit: true, tval: t0}


fn clamp(x:f32,a:f32,b:f32) -> f32{
    if x < a { return a;  }
    if x > b { return b; }
    return x;

fn diffuse_shading(pi:Vector, obj:Sphere, light:Light) -> Color{
    let n = obj.get_normal(pi);
    let lam1 = light.position.minus(pi).normalize().dot(n);
    let lam2 = clamp(lam1,0.0,1.0);

That's it. Here's the final result.


So far I'm really happy with Rust. It has some rough edges they are still working on, but I love the direction they are going. It really could be a replacement for C/C++ in lots of cases.

Buy or no buy? Buy! It's free!